Particle tracking for fractional diffusion with two time scales
نویسندگان
چکیده
منابع مشابه
Particle tracking for fractional diffusion with two time scales
Previous work [51] showed how to solve time-fractional diffusion equations by particle tracking. This paper extends the method to the case where the order of the fractional time derivative is greater than one. A subordination approach treats the fractional time derivative as a random time change of the corresponding Cauchy problem, with a first derivative in time. One novel feature of the time ...
متن کاملFractional diffusion with two time scales
Moving particles that rest along their trajectory lead to time-fractional diffusion equations for the scaling limit distributions. For power law waiting times with infinite mean, the equation contains a fractional time derivative of order between 0 and 1. For finite mean waiting times, the most revealing approach is to employ two time scales, one for the mean and another for deviations from the...
متن کاملParticle tracking for time-fractional diffusion.
A particle tracking code is developed to solve a general time-fractional diffusion equation (FDE), yielding a Lagrangian framework that can track particle dynamics. Extensive simulations demonstrate the efficiency and flexibility of this simple Langevin approach. Many real problems require a vector FDE with variable parameters and multiscaling spreading rates. For these problems, particle track...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2010
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.05.009